×

史上最难的数学题(世界第一难题)

木源网 木源网 发表于2024-02-11 04:48:36 浏览94 评论0

抢沙发发表评论

史上最难烧脑数学题

NP完全问题(NP-C问题),是世界七大数学难题之一。NP的英文全称是Non-deterministicPolynomial的问题,即多项式复杂程度的非确定性问题。简单的写法是NP=P?,问题就在这个问号上,到底是NP等于P,还是NP不等于P。

NP就是Non-deterministicPolynomial的问题,也即是多项式复杂程度的非确定性问题。而如果任何一个NP问题都能通过一个多项式时间算法转换为某个NP问题,那么这个NP问题就称为NP完全问题(Non-deterministicPolynomialcompleteproblem)。NP完全问题也叫做NPC问题。

有些计算问题是确定性的,比如加减乘除之类,你只要按照公式推导,按部就班一步步来,就可以得到结果。但是,有些问题是无法按部就班直接地计算出来的。例如寻找大质数的问题。有没有一个公式,一旦套入公式,就可以一步步推算出来,下一个质数应该是多少呢?这样的公式是没有的。再例如,大的合数分解质因数的问题,有没有一个公式,把合数代入以后,就直接可以算出,它的因子各自是多少?也没有这样的公式。

这种问题的答案,是无法直接计算得到的,只能通过间接的“猜算”来得到结果。这就是非确定性问题。而这些问题的通常有个算法,它不能直接告诉你答案是什么,但可以告诉你,某个可能的结果是正确的答案还是错误的。这个可以告诉你“猜算”的答案正确与否的算法,假如可以在多项式时间内算出来,就叫做多项式非确定性问题。而如果这个问题的所有可能答案,都是可以在多项式时间内进行正确与否的验算的话,就叫完全多项式非确定问题。

完全多项式非确定性问题可以用穷举法得到答案,一个个检验下去,最终便能得到结果。但是这样算法的复杂程度,是指数关系,因此计算的时间随问题的复杂程度成指数的增长,很快便变得不可计算了。

人们发现,所有的完全多项式非确定性问题,都可以转换为一类叫做满足性问题的逻辑运算问题。既然这类问题的所有可能答案,都可以在多项式时间内计算,人们于是就猜想,是否这类问题存在一个确定性算法,可以在多项式时间内直接算出或是搜寻出正确的答案呢?这就是着名的NP=P?的猜想。

解决这个猜想,无非两种可能,一种是找到一个这样的算法,只要针对某个特定NP完全问题找到一个算法,所有这类问题都可以迎刃而解了,因为他们可以转化为同一个问题。另外的一种可能,就是这样的算法是不存在的。那么就要从数学理论上证明它为什么不存在。

当今时代,在纯粹科学研究,通信、交通运输、工业设计和企事业管理部门,在社会军事、政治和商业的斗争中涌现出大量的NP问题。若按经典的纯粹数学家们所熟悉的穷举方法求解,则计算时间动辄达到天文数字,根本没有实用价值。

也因此,在数学界中有许多有经验的人认为,对于这些问题,根本上就不存在完整、精确、而又不是太慢的求解算法。由此可见,NP=P?可能是这个世纪最重要的数学问题了。

中国十大最难的数学题

没有最难问题,这个要分人而异。Hilbert23个数学问题在1900年巴黎国际数学家代表大会上,希尔伯特发表了题为《数学问题》的著名讲演。

他根据过去特别是十九世纪数学研究的成果和发展趋势,提出了23个最重要的数学问题。

这23个问题通称希尔伯特问题,后来成为许多数学家力图攻克的难关,对现代数学的研究和发展产生了深刻的影响,并起了积极的推动作用,希尔伯特问题中有些现已得到圆满解决,有些至今仍未解决。

世界最难的3大数学题及答案

1.费马猜想

又称“费马大定理”或“费马问题”,1637年由法国数学家费马提出,若用不定方程来表示,费马大定理即当整数n>2时,关于x,y,z的方程x+y=z没有正整数解。用数学语言来表达就是:形如xn+yn=zn的方程,当n大于2时没有正整数解。剑桥大学怀尔斯在1995年彻底解决了这一大难题。

2.四色猜想

世界近代三大数学难题之一,四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯·格思里,来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,做了100亿次判断,终于完成了四色猜想的证明。

3.哥德巴赫猜想

世界近代三大数学难题之一。1742年6月7日,哥德巴赫写信给当时的大数学家欧拉,提出了以下想法:任何一个大于等于6的偶数,都可以表示成两个奇质数之和;任何一个大于等于9的奇数,都可以表示成三个奇质数之和。这就是著名的哥德巴赫猜想。至今仍没人能证明,最接近成功的是陈景润。

哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和,如6=3+3,12=5+7等等。

世界上第一最难的数学题及答案

答:最难的当然是我国数学家陈景润差点就完成证明的“哥德巴赫猜想”了。至今无人能证明。

1742年德国人哥德巴赫给当时住在俄国彼得堡的大数学家欧拉写了一封信,在信中提出两个问题:第一,是否每个大于4的偶数都能表示为两个奇质数之和?如6=3+3,14=3+11等。第二,是否每个大于7的奇数都能表示3个奇质数之和?如9=3+3+3,15=3+5+7等。这就是著名的哥德巴赫猜想。它是数论中的一个著名问题,常被称为数学皇冠上的明珠。

谁能完成证明,那将轰动全世界。

史上最难的数学题是什么

哥德巴赫猜想。哥德巴赫猜想是世界数学最难题之一。上世纪末,我国科学家陈景润计算出了1+2。不知道到现在有没有人计算出1+1,或者说完全解开哥德巴赫猜想。

史上最难题目数学题

离散对数问题是一种寻找离散对数的数学难题,其基本形式为:对于给定的素数P、底数g和整数y,找到满足g'x=ymodP的最小整数x(其中mod为“取模运算”)。这个问题看起来非常简单,但实际上却需要极其复杂的数学计算和理论推导。

离散对数问题的难度之所以如此之高,主要是因为它涉及到了数论的一些基本概念和理论,如模运算、欧拉定理、费马小定理、同余方程等等。

在已知底数和离散对数的情况下,可以很容易地将模运算转化为指数形式,但如果只知道底数和余数,却要求求出离散对数的值,就需要通过数学上的一些技巧来进行推导。

群贤毕至

访客